Zero spontaneous curvature and its effects on lamellar phase morphology and vesicle size distributions.
نویسندگان
چکیده
Equimolar mixtures of dodecyltrimethylammonium chloride (DTAC) and sodium octyl sulfonate (SOSo) show a vesicle phase at >99 wt % water and a single, fluid lamellar phase for water fractions below 80 wt %. This combination is consistent with the bilayer bending elasticity kappa approximately k(B)T and zero bilayer spontaneous curvature. Caillé line shape analysis of the small-angle X-ray scattering from the lamellar phase shows that the effective kappa depends on the lamellar d spacing consistent with a logarithmic renormalization of kappa, with kappa(o) = (0.8 +/- 0.1)k(B)T. The vesicle size distribution determined by cryogenic transmission electron microscopy is well fit by models with zero spontaneous curvature to give (kappa + (kappa/2)) = (1.7 +/- 0.1)k(B)T, resulting in kappa = (1.8 +/- 0.2)k(B)T. The positive value of kappa and the lack of spontaneous curvature act to eliminate the spherulite defects found in the lamellar gel phases found in other catanionic mixtures. Current theories of spontaneous bilayer curvature require an excess of one or more components on opposite sides of the bilayer; the absence of such an excess at equimolar surfactant ratios explains the zero spontaneous curvature.
منابع مشابه
Modeling the Spontaneous Curvature Effects in Static Cell Membrane Deformations by a Phase Field Formulation
In this paper, we study the effects of the spontaneous curvature on the static deformation of a vesicle membrane under the elastic bending energy, with prescribed bulk volume and surface area. Generalizing the phase field models developed in our previous works, we deduce a new energy formula involving the spontaneous curvature effects. Several axis-symmetric configurations are obtained through ...
متن کاملLamellar gels and spontaneous vesicles in catanionic surfactant mixtures.
Caillé analysis of the small-angle X-ray line shape of the lamellar phase of 7:3 wt/wt cetyltrimethylammonium tosylate (CTAT)/sodium dodecylbenzene sulfonate (SDBS) bilayers shows that the bending elastic constant is kappa = (0.62 +/- 0.09)k(B)T. From this and previous results, the Gaussian curvature constant is kappa = (-0.9 +/- 0.2)k(B)T. For 13:7 wt/wt CTAT/SDBS bilayers, the measured bendin...
متن کاملAdhesion of Binary Vesicles Containing negative spontaneous curvature lipids
Adhesion of cell membranes is one of the elementary processes of biological phenomena such as membrane traffic. So far, the physical aspects of the vesicle adhesion have been investigated from the view points of a key-lock interaction between ligand and receptor molecules embedded in the membranes, or the interplay of the generic interactions (repulsive hydration interaction and attractive van ...
متن کاملSpontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature.
Recent experimental studies on supported lipid bilayers and giant vesicles have shown that uni-lamellar membrane systems can undergo spontaneous tubulation, i.e., can form membrane tubules or nanotubes without the application of external forces. In the case of supported lipid bilayers, the tube formation was induced by the adsorption of antimicrobial peptides. In the case of giant vesicles, spo...
متن کاملDynamics of multicomponent vesicles in a viscous fluid
We develop and investigate numerically a thermodynamically consistent model of two-dimensional multicomponent vesicles in an incompressible viscous fluid. The model is derived using an energy variation approach that accounts for different lipid surface phases, the excess energy (line energy) associated with surface phase domain boundaries, bending energy, spontaneous curvature, local inextensib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 22 6 شماره
صفحات -
تاریخ انتشار 2006